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Diffusion of neutrally buoyant spherical particles in concentrated monodisperse
suspensions under simple shear flow is investigated. We consider the case of non-
Brownian particles in Stokes flow, which corresponds to the limits of infinite Péclet
number and zero Reynolds number. Using an approach based upon ideas of dynamic
light scattering we compute self- and gradient diffusion coefficients in the principal
directions normal to the flow numerically from Accelerated Stokesian Dynamics
simulations for large systems (up to 2000 particles). For the self-diffusivity, the present
approach produces results identical to those reported earlier, obtained by probing the
particles’ mean-square displacements (Sierou & Brady, J. Fluid Mech. vol. 506, 2004
p. 285). For the gradient diffusivity, the computed coefficients are in good agreement
with the available experimental results. The similarity between diffusion mechanisms in
equilibrium suspensions of Brownian particles and in non-equilibrium non-colloidal
sheared suspensions suggests an approximate model for the gradient diffusivity:
D� ≈ Ds/Seq(0), where Ds is the shear-induced self-diffusivity and Seq(0) is the static
structure factor corresponding to the hard-sphere suspension at thermodynamic
equilibrium.

1. Introduction
The phenomenon of shear-induced diffusion in dispersions has been extensively

investigated over the past 30 years. The earliest studies were concerned with the
enhanced transport of a passive scalar (dissolved species or a temperature) in a
sheared suspension of freely suspended particles (Leal 1973; Nir & Acrivos 1976). In
these studies, it was proposed that the diffusive transport in a surrounding fluid phase
can be substantially augmented by micro-convection resulting from the rotation of a
particle. In a pioneering experimental study Eckstein, Bailey & Shapiro (1977) showed
that the shear flow causes the particles themselves to exhibit random migrations
leading to a diffusive-like behaviour. Subsequently, this intriguing phenomenon of
shear-induced diffusion of particles has been studied experimentally (Leighton &
Acrivos 1987; Phillips et al. 1992; Breeveld et al. 1998, 2001), theoretically (Acrivos
et al. 1992; da Cunha & Hinch 1986; Wang, Mauri & Acrivos 1996, 1998; Morris &
Brady 1996) and computationally (Marchioro & Acrivos 2001; Drazer et al. 2002;
Sierou & Brady 2004).

The major obstacle to development of a theory of shear-induced diffusion in non-
Brownian suspensions at low Reynolds numbers is the fact that the encounter between
two perfectly smooth spheres does not lead to a net lateral displacement of either
sphere due to the linearity and time-reversibility of the Stokes equations. Thus, at
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the pair level a non-hydrodynamic microscopic mechanism must be introduced to
give rise to the microscopic irreversibility that would lead to net displacement upon a
single encounter and to a diffusive behaviour upon many successive encounters with
neighbouring particles, provided that the motion becomes uncorrelated after a certain
time. Following this line, da Cunha & Hinch (1996) studied the two-particle problem
in the presence of small surface roughness, while in Brady & Morris (1997) residual
Brownian motion combined with short-range repulsive forces was the mechanism
giving rise to microscale irreversibility. Another possible diffusive mechanism that is
of hydrodynamic origin involves interaction of at least three particles (Wang et al.
1996, 1998).

It has been argued by Marchioro & Acrivos (2001) that although the equations of
fluid motion are linear, the equations of particle motion are not, and the complicated
hydrodynamic interactions between them mediated by a viscous fluid may lead to
the loss of memory in phase space due to chaotic dynamics. Thus, a tracer particle
may exhibit a random walk in a homogenous suspension under the action of purely
deterministic forces. These arguments are now supported by recent findings of Drazer
et al. (2002) who showed via numerical Stokesian Dynamics (SD) simulations on
strongly sheared suspensions that the evolution of the system in phase space is indeed
chaotic, i.e. the largest Lyapunov exponent is positive. Since in SD simulations a short-
range inter-particle repulsive potential that resembles the hard-sphere interaction is
normally used to prevent particles from overlapping, it is not entirely clear whether the
origin of the diffusive behaviour is purely hydrodynamic or not. On the other hand, in
a related problem of particle sedimentation the chaotic dynamics can be revealed even
for three(!) spherical particles settling in a vertical plane in an unbounded viscous
fluid at Re =0 in the pure hydrodynamic limit (Jánosi et al. 1997).

For colloidal suspensions two relevant particles diffusivities can be identified: (i)
the self-diffusivity of a tracer particle in a homogenous suspension; (ii) the gradient
diffusivity relating the flux of particles, j , to a small steady concentration gradient,
∇φ:

j = −D�(φ) · ∇φ. (1.1)

Note that in contrast to Brownian colloidal dispersions where the motion is thermally
driven, there is no short-time diffusivity in the absence of Brownian motion because
the initial dynamics of a particle are deterministic. Only at long times such that the
shearing motion has forced a particle to encounter many successive collisions with
other particles, may the motion become uncorrelated and diffusive. Thus, both the
shear-induced self- and gradient diffusivities are ‘long-time’ diffusivities.

Although self-diffusion coefficients can be calculated using appropriate kinematic
descriptions such as the time rate of change of a particle’s mean-square displacement
or the integral of the velocity autocorrelation function (Marchioro & Acrivos 2001;
Sierou & Brady 2004), computation of the gradient diffusivity is far from trivial.
Marchioro & Acrivos (2001) proposed a novel method for calculating the gradient
diffusivity numerically using Stokesian Dynamics simulations. The essence of their
method is that the suspension microstructure relaxes with a rate proportional to the
gradient diffusion coefficient. Thus, if the initial microstructure is rather different from
that of a suspension that has been steadily sheared for a long time, from probing
the rate of relaxation of the initially distorted suspension microstructure towards a
steady state, one can extract the gradient diffusivity.

Our approach is different and comes from ideas of dynamic light scattering and
concerns the relaxation of the average fluctuation in particle number density rather
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than spatial variations of the macroscopic density itself. As we shall see, the starting
point is the so-called dynamic structure factor (or intermediate dynamic scattering
function), which allows one to describe both the self- and the gradient diffusivity
independently of the underlying microscale dynamics. A recent modification of
Stokesian Dynamics, called Accelerated Stokesian Dynamics (ASD) (Sierou & Brady
2001), is used in simulations. Its low computational cost of O(N log N ), with N being
the number of particles, allows us to compute self- and gradient diffusivities from a
single long simulation run on steadily sheared homogenous suspensions of N ∼ 102–
103 particles without introducing an artificial inhomogeneity to the suspension micro-
structure. It is shown that the self-diffusivity extracted from the decay of the relevant
time autocorrelation is equivalent to the integral of the velocity autocorrelation, which
is a well-known kinematic description of the self-diffusivity. The analogous kinematic
description of the gradient diffusivity is derived in terms of the velocity cross-
correlation function and the non-equilibrium osmotic compressibility. It is anticipated
that this formula should hold in many different physical contexts (e.g. long-time
gradient diffusivity in colloidal suspensions) since it is independent of the microscale
dynamics and is derived from purely kinematic arguments.

Since diffusion in directions transverse to the direction of the flow is the major
mechanism of particle transport, we shall only study diffusion in the directions of
the velocity gradient (Dyy) and vorticity (Dzz). Although a diffusivity along the flow
direction (Dxx) and an off-diagonal component (Dxy) can also be studied (see Sierou &
Brady 2004), they are negligible compared to the advective transport in those
directions and will be not considered here.

The paper is organized as follows. In § 2 we discuss how the diffusion coefficients can
be determined using the dynamic structure factor approach. In § 3 we briefly describe
the details of the numerical simulations. The results for the diffusivities along both
principal directions transverse to the direction of the flow (velocity-gradient and the
vorticity directions, respectively) are presented. The computed values of self-diffusion
coefficients are reported in § 4.1 and compare favourably with those obtained in
Sierou & Brady (2004) from the mean-square displacement and the velocity auto-
correlation. Section 4.2 describes the computation of the gradient diffusion coefficients.
Values of gradient diffusion coefficients extrapolated to the limit of an infinite system
are compared with available experimental results for a wide range of particle volume
fractions. Comparison of our results to the earlier calculations by Marchioro &
Acrivos (2001) is addressed in section § 5. In § 6 a brief summary and concluding
remarks are provided.

2. Dynamic structure factor approach
To understand how we can determine the diffusivity in shearing flows, consider the

following conservation equation for the local particle number density, n(x, t):

∂n

∂t
+ Γ̇ · x · ∇n + U · ∇n = −∇ · j , (2.1)

where Γ̇ is the constant velocity-gradient tensor, U is the bulk average velocity
measured at an arbitrary field point, x0, from which the bulk shear velocity is
referenced and j is the diffusive flux of particles. Neglecting memory effects for
time scales over which the diffusion is stationary, the flux should be expressible as a
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generalized Fick’s law:

j = −
∫

Dc(x − x ′) · ∇n(x ′, t) dx ′, (2.2)

where the non-local kernel is identified as the collective diffusivity. The spatial Fourier
transform (denoted by ̂ ) of (2.1) is

∂n̂

∂t
− k · Γ̇ · ∇kn̂ − ik · U n̂ = −k · D̂c

(k) · k n̂, (2.3)

which is an analogue of the conservation equation describing the evolution of a passive
scalar field in a linear flow with a constant isotropic diffusivity D= DI. Note that the
spreading or dispersion of the passive scalar due to the shear flow, as characterized
by the second moment

∫
xxn(x, t) dx, may grow faster than linearly in time. This is

the well-known Taylor dispersion (Elrick 1962) and is accounted for by the k · Γ̇ · ∇kn̂

term on the left-hand side of (2.3).
In a steadily sheared suspension the average density fluctuation is zero and

therefore we consider the two-point time autocorrelation of the local particle density,
F (k, t) = 〈n̂(k, t)n̂∗(k, 0)〉, where ∗ indicates a complex conjugate and angular brackets
denote the ensemble average over all time intervals of duration t . Multiplying both
sides of (2.3) by n̂∗, the evolution equation for F is

∂F

∂t
− k · Γ̇ · ∇kF − ik · UF + 〈n̂k · Γ̇ · ∇kn̂

∗〉 = −k · D̂c
(k) · kF. (2.4)

The above equations for n̂ and F have the expected form for a diffusive process in a
linear flow, and, by comparison to the equation derived from the particle dynamics,
can be used to obtain the proper expressions for the diffusivities.

The local particle number density at any point x can be represented in terms of
distributions

n(x, t) =

N∑
α=1

δ(x − xα(t)), (2.5)

where xα(t) is the position of particle α at time t. Thus, the spatial Fourier transform
of the particle number density is

n̂(k, t) =

∫
exp[ik · x]

N∑
α=1

δ(x − xα(t)) dx =

N∑
α=1

exp[ik · xα(t)], (2.6)

and the autocorrelation in number density becomes

F (k, t) =
1

N
〈n̂(k, t)n̂∗(k, 0)〉 =

1

N

〈
N∑

α,β

exp[ik · (xα(t) − xβ(0))]

〉
, (2.7)

where angular brackets 〈 〉 denote the appropriate ensemble average. It it readily seen
that as the constant background level of n is irrelevant, F is the autocorrelation of the
density fluctuations. In dynamic light scattering F is known as the dynamic structure
factor (also known as the intermediate scattering function) and can be probed via
the time correlation of the intensity of the scattered electric field (Berne & Pecora
1976; Pusey 1991). The self-dynamic structure factor (a.k.a self-intermediate scattering
function) can be introduced in an analogous way by neglecting cross-correlations in
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positions of different particles in (2.7),

Fs(k, t) =
1

N

〈
N∑

α=1

exp[ik · (xα(t) − xα(0))]

〉
. (2.8)

The self-diffusive motion can be probed via F if some small portion of the particles
in a sampling volume are tagged (e.g. have different refractive index). Indeed, due
to the diluteness of the tagged particles the phase factor |ik · (xα(t) −xβ(0))| is large
even for small k and thus the cross-terms α �= β in F involving correlation in relative
positions of different particles disappear upon averaging and F becomes the self-
dynamic structure factor, Fs . On the other hand, at large values of k small variations
in relative particle positions, (xα(t) −xβ(0)), cause large variations in the phase factors
and, again, F tends to Fs , regardless of the labelling of individual particles. Therefore,
in the limit ka 	 1, F also measures the average self-motion of individual particles.
Here a is the size of a particle. In general, at moderate k, the cross-terms involving
(xα(t) − xβ(0)) are important and F is related to the collective motion of particles
(Pusey 1991). In computer simulations both F and Fs can be probed directly from
the exact knowledge of the particles’ positions as a function of time.

Next we differentiate F with respect to time to obtain

Ḟ (k, t) = ik · 1

N

〈
N∑

α=1

Uα exp[ik · (xα(t) − xβ(0))]

〉
, (2.9)

where Uα denotes the velocity of the particle α at time t . We write Uα as

Uα = Γ̇ · (xα − x0) + U∞(x0) + U ′
α

= Γ̇ · xα + U∗ + U ′
α, (2.10)

where Γ̇ is the velocity-gradient tensor, U∞ is the bulk average velocity measured at
the arbitrary field point, x0, from which the bulk shear velocity is referenced and U ′

α is
the configuration-dependent velocity fluctuation of particle α – that is, the velocity of
particle α relative to the uniform and bulk shearing motions. Here, U∗ = U∞ − Γ̇ · x0.
Upon inserting Uα from (2.10) in (2.9) we obtain

Ḟ − k · Γ̇ · ∇kF − ik · U∗F − ik · Γ̇ · 1

N

〈
N∑

α,β

xβ(0) exp[ik · (xα(t) − xβ(0)]

〉

= ik · 1

N

〈
N∑

α,β

U ′
α exp[ik · (xα(t) − xβ(0))]

〉
. (2.11)

It is straightforward to show that the last term on the left-hand side of (2.11) is equal
to the term 〈n̂k · Γ̇ · ∇kn̂

∗〉 in (2.4). Moreover, it follows from symmetry that

1

N

〈
N∑

α,β

(xβ(0) − xcm) exp[ik · (xα(t) − xβ(0)]

〉
= 0,

where xcm is the position of the centre of mass of the N -particle configuration at
t = 0. Therefore, (2.11) can be re-written as

Ḟ − k · Γ̇ · ∇kF − ik · Ũ
∗
F = ik · 1

N

〈
N∑

α,β

U ′
α exp[ik · (xα(t) − xβ(0))

〉
(2.12)
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with

Ũ
∗
= U∞ − Γ̇ · (x0 − xcm),

indicating that the natural origin in a homogeneous suspension is the centre of mass
of the particles. Similarly, the term 〈n̂k · Γ̇ · ∇kn̂

∗〉 in (2.3) can be shown to be zero.
Thus, comparing (2.12) and (2.4) we identify the collective diffusivity via the

following ansatz:

ik · 1

N

〈
N∑

α,β

U ′
α exp[ik · (xα(t) − xβ(0))]

〉
= −k · D̂c

(k) · kF, (2.13)

where D̂
c
(k) is generally k-dependent as the process depends on the spatial scale of

the density fluctuation. As defined, the collective diffusivity is also, in general, time
dependent, while it is expected to become stationary after a finite correlation time.

When ka � 1 the scale of the density fluctuation is much larger than the size of
a single particle, and the relaxation of the long-wavelength density fluctuation yields
a particle flux which is the same as if a small constant density gradient persisted

everywhere (Rallison & Hinch 1986). Therefore, as ka → 0, we expect that D̂
c
(k) will

asymptote to the constant gradient diffusivity, D̂�.
When self-diffusion is considered, neglecting the cross-terms involving correlation

between positions of distinct particles will result in the same equation as (2.11) with
F becoming Fs and the self-diffusivity can be defined via

ik · 1

N

〈
N∑

α=1

U ′
α exp[ik · (xα(t) − xα(0))]

〉
= −k · D̂s · k Fs. (2.14)

At long times, tagged particles wander far compared to their size to create a diffusive
motion, but still a small distance compared to the lengthscale of the spatial variation
of the tracer particles, k−1. Thus, in the limit ka → 0, Ds in (2.14) represents the long-
time particle self-diffusivity. The self-diffusivity Ds is anticipated to be independent
of k.

Note that for k ⊥ Γ̇ , U∗ the convective terms on the left-hand side of (2.11) drop
out yielding the familiar expressions

− Ḟ

k2F
= k̃ · D̂c

⊥(k) · k̃, − Ḟ s

k2Fs

= k̃ · D̂s

⊥ · k̃. (2.15)

Here the overdot denotes the time derivative and k̃ = k/|k|. The temporal behaviour of
F and Fs in (2.15) is well known in equilibrium colloidal suspensions in the absence
of an imposed flow (Γ̇ = U∗ = 0) (Berne & Pecora 1976), with scalar diffusivities

k̃ · D̂s,c · k̃ = Ds,c due to rotational invariance. Our derivation (2.12)–(2.15) gives the
appropriate generalization necessary for linear flows and provides the operational
means to determine the diffusivities from the decay of the dynamic structure factor.

In the small-k limit the left-hand side of (2.14) becomes −k · N−1〈
∑N

α=1 U ′
α

�xα(t)〉 · k since 〈
∑

α U ′
α〉 = 0, Fs ∼ 1, and therefore

D̂
s
=

1

N

〈
N∑

α=1

∫ t

τ=0

U ′
α(t)Uα(τ ) dτ

〉
. (2.16)

The self-diffusivity in a linear flow can be expressed in terms of autocorrelation
between the velocity fluctuation and the actual velocity Uα in accord with findings of
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Sierou & Brady (2004), who derived (2.16) from purely kinematic arguments. With

a finite correlation time the integral in (2.16) results in a stationary diffusivity D̂
s

(Marchioro & Acrivos 2001; Sierou & Brady 2004). In the absence of the imposed
flow (2.16) becomes the well-known expression for the equilibrium self-diffusivity in
terms of the integral over the velocity autocorrelation.

For the collective diffusivity as defined by (2.13), expanding the phase factor on the
left-hand side near k = 0 as

exp[ik · (xα(t) − xβ(0))] = exp[ik · (xα(t) − xβ(t))]
[
1 + ik · �xβ − 1

2
kk :�xβ�xβ + . . .

]
,

(2.17)

with �xβ = xβ(t) − xβ(0), one arrives at

D̂
c
= F −1 1

N

〈
N∑

α,β

(
U ′

α�xβ + 1
2
(ik · �xβ)U ′

α�xβ − . . .
)
exp[ik · (xα(t) − xβ(t))]

〉
.

(2.18)

Also, using (2.17) it can be shown that in the small-k limit the dynamic structure
factor, F , asymptotes to a static structure factor, S(k), that probes the instantaneous
microstructure of the suspension at wavevector k:

F (k, t) ∼ S(k) =
1

N

〈
N∑

α,β

exp[ik · (xα(t) − xβ(t))]

〉
=

1

N

〈∣∣∣∣∣
N∑

α=1

exp[ik · xα]

∣∣∣∣∣
2〉

, (2.19)

which is anticipated to be stationary for a steadily sheared suspension. Thus, the

leading-order term of the small-k expansion of D̂
c
in (2.18) gives the gradient diffusivity

that can be expressed in terms of the velocity cross-correlation,

D̂
�

= lim
k→0

1

NS(k)

〈
N∑

α,β

Mαβ exp[ik · (xα(t) − xβ(t))]

〉
= lim

k→0

H(k, t)

S(k)
, (2.20)

where

Mαβ =

∫ t

τ=0

U ′
α(t)Uβ(τ ) dτ. (2.21)

As for the self-diffusivity, in the long-time limit the correlation is lost and the integral
over the velocity cross-correlation is stationary. Also note that one cannot simply
pass to the limit by setting k = 0 in the exponential factor that multiplies Mαβ in
(2.20) since the doubly infinite sum 〈

∑
αβ Mαβ〉 =0 due to the fact that the mean of

the velocity fluctuation is zero.
An expression analogous to (2.20) for the short-time collective diffusivity in an

equilibrium colloidal dispersion valid for an arbitrary k was derived by Pusey (1991)
using a short-time expansion of F . Indeed, in the short-time Brownian regime, i.e.
a2/ν � t � a2/Do, where Do is the Brownian diffusivity of an isolated particle, the
colloidal particles have hardly moved from their initial positions, |k · �xβ | � 1 holds
even for large values of k and (2.20) is expected to be valid for a wide range of
wavevectors. Segré, Behrend & Pusey (1995) used (2.20) to evaluate the short-time
collective diffusivity from lattice Boltzmann simulations of an equilibrium colloidal
dispersion. Since for times t � a2/Do (2.20) is asymptotically valid for arbitrary k, it
can be viewed as the effective k-dependent diffusivity that asymptotes to the short-
time gradient diffusivity and to the short-time self-diffusivity in the low- and high-k

limits, respectively (Russel & Glendinning 1981). Indeed, for ka 	 1, H →D̂s because
the contribution from the cross-terms vanishes on average due to large variations in
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the phase factor |ik · (xα − xβ)| even for small instantaneous relative separations, while
Seq(k) → 1 as k → ∞. In contrast to the equilibrium case, for shear-induced diffusion,
(2.20) cannot be viewed as the k-dependent effective diffusivity for a wide range of k

since the motion is not diffusive for short times t � γ̇ −1, with γ̇ being the shear rate.
Therefore, (2.20) is only asymptotically valid in the low-k limit.

For equilibrium colloidal suspensions there is a simple physical interpretation of the
collective diffusivity, (2.20). In the limit of small k, it is well known that the magnitude
of the density fluctuations of a system, as characterized by the static structure factor
S(0), is related to its isothermal compressibility (∂n/∂Π )T (Hansen & McDonald
1986; Pusey 1991):

Seq(0) = kBT

(
∂n

∂Π

)
T

. (2.22)

Thus, Seq(0)−1 can be interpreted as a thermodynamic force associated with the
density gradient which drives the diffusion, and the hydrodynamic factor, H(k), in
(2.20) can be interpreted as the collective mobility or the mean sedimentation velocity
relative to zero-volume-flux axes (Batchelor 1976). For a dilute colloidal suspension
of hard spheres Seq(0) ∼ 1 − 8φ due to excluded volume effects, while the collective
mobility is given by the average sedimentation velocity, H(0) ∼ (6πηa)−1(1 − 6.55φ),
leading to the classical result D� = kBT H(0)/Seq(0) ∼ Do(1 + 1.45φ) (Batchelor 1976).

For non-colloidal sheared suspensions, S(k), which is a mathematical construct,
can be interpreted as the inverse of the non-equilibrium osmotic compressibility
that results from the shear-induced hydrodynamic (and interparticle) forces among

particles and (2.20) for D̂c can be given a similar interpretation.
Note that the expressions derived for both the self- (2.16) and gradient (2.20) dif-

fusivities are independent of the details of the microscale dynamics and should hold
quite generally, and specifically, for the case of shear-induced diffusion of non-colloidal
particles far from thermodynamic equilibrium. The only proviso is that the correlation
time must be finite so that a constant diffusivity is attained in the long-time limit.

3. The simulation method
In this study the recent modification of the conventional Stokesian Dynamics (SD)

method (Bossis & Brady 1984), so-called Accelerated Stokesian Dynamics (ASD) is
used. The detailed description of ASD is provided in Sierou & Brady (2001). Without
going into the details of the new implementation, the major advantage of ASD is
its high computational efficiency that scales as O(N log N ) vs. O(N3) for SD, with
N being the number of particle in the simulation box. This significant improvement
allows large systems of the order of 103 particles to be simulated, an ability that
will be shown to be critical for reliable extrapolation to infinite system size for the
gradient diffusivity.

The simple shear flow of a monodisperse suspension of non-Brownian spherical
particles with radii a in a viscous fluid of viscosity η is considered. Non-Brownian
implies that the Péclet number, Pe = a2γ̇ /2Do, is infinitely large. Here, γ̇ , is a shear rate
and Do = kT /6πηa is the Brownian diffusivity of an isolated particle. We also assume
Stokes flow conditions such that the particle Reynolds number, Rep = a2γ̇ /ν, where
ν is the kinematic viscosity of the fluid, is vanishingly small. Also, following previous
numerical studies a short-range repulsive interparticle force was introduced to prevent
particles from overlapping. We used the same form of the pair-wise interparticle force
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Figure 1. Radial pair-distribution function g(r) for φ = 0.35. The dashed line is the Percus–
Yevic closure for a hard-sphere suspension at equilibrium, open circles (�) are the results
of Brownian dynamics simulations, and the solid line corresponds to the angularly averaged
value 〈g(r)〉Ω for a non-colloidal suspension of hard spheres in a simple shear flow (N = 512)
corresponding to infinite Péclet number.

as in Sierou & Brady (2004), where the self-diffusivity was investigated:

Fαβ = F0

τe−τε

1 − e−τε
eαβ, (3.1)

where 6πa2γ̇ Fαβ is the dimensional force exerted on sphere α by sphere β , F0 stands
for the dimensionless magnitude of the force, τ relates to its range, ε = (r − 2a)/a
is the dimensionless separation distance between particles’ surfaces, and eαβ is the
unit director connecting the centres of the two particles. In the present investigation
the value of τF0 was set to unity, while τ was set at 1000. To demonstrate that this
particular form of the interparticle force does not introduce any significant disturbance
to the suspension microstructure at equilibrium, we pre-equilibrated 500 particles
using standard Brownian dynamics (BD) simulations and compared the resulting
pair-distribution function g(r) with the Percus-Yevic (PY) closure for hard spheres
(Hansen & McDonald 1986). As seen in figure 1, the results of the BD simulations
(open circles) and the PY closure (the dashed line) are in very close agreement. The
considerable difference between the angularly averaged 〈g(r)〉Ω corresponding to a
strongly sheared non-colloidal suspension evaluated from the ASD simulation (the
solid line) and an equilibrium g(r) (the dashed line) indicates the strong effect of the
shear on the suspension microstructure (e.g. Gadala-Maria & Acrivos 1980; Brady &
Morris 1997; Sierou & Brady 2002). We shall see in § 4 that the shear-induced
distortion of the suspension microstructure occurs not only in the direction of the
flow, but also in the plane normal to the flow.

Throughout the paper we use non-dimensional lengths scaled with the particle
radius a and non-dimensional times scaled with γ̇ −1. Thus, the diffusivities are scaled
by a2γ̇ , wavevectors by a−1 and velocities by aγ̇ . A fourth-order Adams–Bashforth
time-integration scheme was used, while simulation time steps ranged from �t =
5 × 10−3 to 1 × 10−4 depending on the particle volume fraction. Random initial hard-
sphere configurations are created using standard methods of molecular dynamics.
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Figure 2. Decay of the self-dynamic structure factor, Fs(k, t), vs. dimensionless time, t , for a
system of N = 512, φ = 0.35 over a total strain of 20. (a) Solid lines correspond to wavevectors
k = 2πm/H ey and dashed lines to k = 2πm/H ez with m= 1, 2, 3 (thicker lines correspond to
larger k). (b) The dependence −k−2 ln Fs(k, t) vs. t: ——, k = 2πm/H ey; – – –, k = 2πm/H ez

with m= 1, 2, 3. Curves corresponding to different wavevector in both y and z directions
collapse onto single curves, resulting in k-independent self-diffusivities in the long-time limit.
The resulting values of the self-diffusion coefficients are found as the slopes of the curves.

4. Results
4.1. Transverse self-diffusivity

First we tested the proposed approach by calculating self-diffusion coefficients, Ds
yy and

Ds
zz (where ̂ is ommited for simplicity) for a system of N =512 particles at a volume

fraction φ =0.35. Figure 2 shows the decay of the self-dynamic structure factor,
Fs(k, t), calculated using (2.8) for three different values of the wavevector k = 2πm/H ,
where m =1, 2, 3 in both directions y and z for strains up to 20. Here, H is the height
of the simulation cell scaled with the particle radius a. To improve the statistics we
averaged the data over several simulation runs each of 200 time strains starting from
independent random initial realizations. Following Sierou & Brady (2004) to further
reduce the statistical noise, the values of Fs are averaged over all possible (overlapping)
time intervals available for each simulation run. It is evident from figure 2(a) that
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Figure 3. The velocity auto-correlation functions and their integrals for a system of N = 512,
φ = 0.35. The solid lines correspond to the self-diffusivity in the velocity-gradient direction,
while the dashed lines correspond to the vorticity direction. Thinner lines are the velocity
auto-correlation functions, while thicker lines are their integrals. The resulting values of the
self-diffusivities are given by the areas under the curves or by the plateau values of the integral
lines.

after a short time of ∼ 5 strains the linear diffusive behavior is established and Fs

decays exponentially according to (2.15). When −k−2 lnFs is plotted as a function
of time (see figure 2b), the curves corresponding to different k in figure 2(a) collapse
onto one curve resulting in a k-independent self-diffusivity as anticipated from (2.16).
The fact that the same value of Ds is recovered not only for small k but even for
k ≈ 1 reflects the fact that, unlike light scattering experiments, in simulations we can
‘tag’ all the particles in the cell and probe Fs at arbitrary k without being concerned
about correlations between distinct particles. The self-diffusion coefficients shown in
the figure 2(b) are found as the slopes of the curves. For comparison, self-diffusion
coefficients are evaluated from the integral of the velocity auto-correlation function,
shown in figure 3 as well as its integral. It is readily seen that the values of the
self-diffusivity resulting from the two approaches show excellent agreement and
are within the margins of statistical error of the values reported by Sierou &
Brady (2004): Ds

yy = 0.0460 ± 0.0050, Ds
zz = 0.0185 ± 0.0020. Further, we repeated the

calculations for a wide range of particle volume fractions φ = 0.05–0.60 with N = 512.
As discussed in Sierou & Brady (2004), the effect of the finite size of the simulation
cell on the self-diffusivity is rather weak, Ds ∝ (1 − bN−1), so further corrections to
the infinite system limit for larger systems would be very small.

Since the extensive study of the self-diffusivity using ASD simulations in the range
φ = 0.10–0.50 was reported earlier by Sierou & Brady (2004), where the self-diffusivity
was found by probing the time rate of change of the mean-square displacement or
via the velocity autocorrelation function, we shall only compare these earlier results
to those obtained here from the dynamic structure factor (DSF) approach. Also,
we were able to probe the self-diffusivity beyond the order–disorder transition point
in the shear-induced ordered phase at φ =0.55 and in the shear-melted suspension
at φ = 0.60. Figures 4(a) and 4(b) depict the evolution of −k−2 lnFs(k, t) in the y-
and z-directions, respectively, as a function of time for different volume fractions.
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Figure 4. Evolution of the self-dynamic structure factor, −k−2 ln Fs(k, t), vs. time, for N =512
particles and different particle volume fractions: φ = 0.25 (�), φ = 0.35 (�), φ = 0.45 (�),
φ = 0.55 (�) and φ = 0.60 (�). (a) k =2π/H ey; (b) k =2π/H ez.

It is evident from figure 4 that after a short transient the linear diffusive regime
sets in. Also, the self-diffusivities in both transverse directions increase monotonically
with φ up to φ ∼ 0.40. At φ = 0.55 (� symbols in figure 4), which corresponds to
the shear-induced ordered phase (Sierou & Brady 2002), an abrupt order-of-magnitude
drop in the self-diffusivity is evident in both transverse directions. The analogous
observation of a rapid drop in transverse self-diffusivity related to the shear-induced
ordering transition in colloidal suspension of charge-stabilized ‘soft’ spheres near
the melting point was made in the Brownian dynamics (BD) simulations of Xue &
Grest (1990). The structure of the ordered phase is also quite similar to what was
found in sheared suspensions in BD simulations (Xue & Grest 1990; Foss & Brady
1999) and in experiments (e.g. Ackerson & Pusey 1988; Chen et al. 1992): there
is a string ordering along the flow direction x, while the strings are packed into
an hexagonal lattice in the transverse (y, z)-plane. Also, there have been a number
of computational studies using non-equilibrium molecular dynamics, NEMD, (e.g.
Erpenbeck 1984) that show similar string formation in molecular fluids. To observe
the effect of the flow in the NEMD simulations the shear rate must be very large
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φ Ds
yy Ds

zz Ds
yySB Ds

zzSB

0.05 0.00058 0.00033
0.10 0.0014 0.0010 0.0017 ± 0.0003 0.0011 ± 0.0002
0.15 0.0040 0.0024 0.0045 ± 0.0006 0.0024 ± 0.0004
0.20 0.0084 0.0040 0.0084 ± 0.0010 0.0040 ± 0.0006
0.25 0.0175 0.0069 0.0171 ± 0.0020 0.0070 ± 0.0007
0.30 0.0312 0.0115 0.0310 ± 0.0040 0.0117 ± 0.0010
0.35 0.0467 0.0173 0.0460 ± 0.0050 0.0185 ± 0.0020
0.40 0.0633 0.0285 0.0620 ± 0.0060 0.0290 ± 0.0030
0.45 0.0624 0.0404 0.0583 ± 0.0070 0.0450 ± 0.0040
0.50 0.0572 0.0502 0.0580 ± 0.0070 0.0520 ± 0.0050
0.55 0.0027 0.0051
0.60 0.146 0.125

Table 1. Values of the self-diffusivites Ds
yy and Ds

zz evaluated for different volume fractions
for N = 512 using the dynamic structure factor approach. Ds

yySB and Ds
zzSB correspond to the

equivalent values reported in Sierou & Brady (2004) evaluated via the time rate of change of
the particle mean-square displacements.

(∼ 1012 s−1), and one needs to be concerned about the proper energy removal from
the system. In fact, Evans & Morriss (1986) found that the shear-induced alignment
into strings in these studies was an artifact of the form of the temperature thermostat.
They also suggest that one should not expect to find string-ordering transition in
dense atomic fluids.

Although a detailed study of the suspension microstructure under shear is available
in Sierou & Brady (2002), the shear-induced ordering transition can be easily
distinguished from the plots of a projection of the static structure factor S(k) onto the
velocity-gradient and vorticity axes. As shown in figure 5 the height of the first peak
in S(ky) increases dramatically as particle concentration increases from φ = 0.45 to
φ = 0.55, confirming that layering has occurred, while the height of the second peak
of S(kz) exceeds the first, indicating ordering of strings into a lattice in the (y, z)-plane
(Xue & Grest 1990).

Increasing further the particle volume fraction up to φ = 0.60 while keeping the
shear rate unchanged, results in shear-induced melting of the ordered phase (see
Sierou & Brady 2002) and an abrupt order-of-magnitude increase of the self-diffusivity
(� symbols in figure 4). Table 1 shows the values of the self-diffusivities evaluated for
a wide range of particle volume fractions with N = 512 via the DSF approach and
the analogous results from Sierou & Brady (2004) where the time rate of change of
the particles’ mean-square displacements was probed. The agreement between these
results is very good and the discrepancy is always within the statistical error (not
shown). In the figure 6 the dependence of Ds

yy and Ds
zz on the volume fraction from

table 1 is shown on a log–log plot. Below φ = 0.10 the self-diffusivity grows roughly
as φ2, while beyond φ = 0.20 it grows approximately as φ3.

The presence of a plateau in Ds
yy staring at φ ∼ 0.4 compared to monotonically

increasing Ds
zz up to φ � 0.5 probably reflects the structural changes in the suspension

as the particle concentration increases. As mentioned before, the continuous increase
in the first peak of S(ky), as shown in figures 5, suggests that some layering occurs
prior to the string-ordered transition. We suggest that the anisotropy caused by
layering may hinder the self-diffusivity in the velocity-gradient direction.
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Finally, to rule out the possibility of the effect of the system size on shear-induced
ordering, we repeated simulations above φ = 0.5 for larger systems with up to N = 2048
particles; the same results were produced as with N = 512.

4.2. Calculation of the gradient diffusion coefficients

In this study the collective diffusivity in directions transverse to the direction of flow
is determined via the time evolution of the dynamic structure factor, F (k, t). First,
we will present in detail the results of a test case at a volume fraction φ = 0.35.
In figure 7 we show the time evolution of F (k, t) in the y- and z-directions for
φ = 0.35 and N = 512. As for the self-diffusivity, the values of F are averaged over all
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Figure 8. Time evolution of the averaged total dynamic structure factor, F (k, t), probed at
k = 2π/H for φ =0.35, N =64 for short and long strains. ——, two long runs of × 1600 strains
each; – – –, 32 short runs of × 100 strains each.

available (overlapping) time intervals in one long run (typically up to 400–800 time
strains) and over several independent runs (typically 8) to further improve accuracy.
As expected, the imaginary part of F is very close to zero, while the real part follows
the exponential decay according to (2.15). It can also be shown that time averaging
over a single long run and ensemble averaging over a number of independent shorter
runs are statistically equivalent. In figure 8 the comparison between these two schemes
of averaging is presented for φ = 0.35 and N = 64. The solid and the dashed lines
correspond to the evolution of F averaged over two long runs of 1600 time strains
each and over 32 short runs of 100 strains each, respectively. While there is an
excellent agreement between two sets of curves, averaging over a long run seems to
be preferable since in this case a larger number of overlapping time intervals are
available. The calculations are repeated with a varying number of particles in the
simulation box, from N =64 to N = 2048† and then the collective diffusion coefficients
Dc

yy and Dc
zz are determined as the slopes of the curves of −k2 lnF plotted vs. time

as in figure 9. The shape of the curves in figure 9 is similar to the those in figure 4:
the linear diffusive regime sets in after a short transient of ∼ 2 strains.

The lowest k accessible with current ASD simulations (e.g. kc � 0.22 for φ = 0.35
and N = 2048) is not small enough to accurately determine the gradient diffusivity
from the leading term of the asymptotic expansion of −Ḟ /k2F given by (2.20), and
higher-order terms in the expansion (2.18) need to be taken into account. Although
(2.20) is expected to be asymptotically valid in the vicinity of k = 0, this sets a
severe requirement on the number of particles needed in the simulation box since
kc = (6π2φ/N)1/3 and, for example, to probe the time correlation of the density

† For large systems with N = 1024 and N = 2048 we use an approximate ASD algorithm with zero
far-field force, Fff = 0 (for ASD details see Sierou & Brady 2001). It appears that for simple shear
flow with neutrally buoyant particles the magnitude of Fff is always small and, for instance, the
values of the self-diffivities, Ds

yy,zz, determined using a zero-far-field-force approximation are within
the 5% error margin of those found using complete ASD scheme. Use of this approximation allows
accurate O(N ) computations for large systems, but is restricted to the flows with force-free particles.
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Figure 9. Computed values of −k−2 ln F plotted vs. time t for volume fraction φ = 0.35
and different number of particles: N = 64 (�), N = 128 (�), N = 256 (�), N =512 (�) and
N =1024 (�). The collective diffusivity is determined as a slope of the corresponding curve.
(a) k = 2π/H ey; (b) k = 2π/H ez.

fluctuations with k � 0.1 for φ =0.35 one must be able to simulate systems with
N ∼ 104 particles in a cubic cell, which severely limits the number of simulations that
can be performed. Note, that this differs from the self-diffusivity where the leading
term of the analogous low-k expansion of −Ḟs/k2Fs provides very good results up to
moderate k ∼ O(1).

It appears, however, that values of the collective diffusivity determined using a
two-term expansion in (2.18) are within the statistical accuracy of those found from
direct measurements of the decay of F . In figure 10 the two-term expansion of Ḟ /k2F

in (2.18) is plotted as a function of time for k = key . As expected from the asymptotic
expression (2.20), the form of the curves resembles the integral of the velocity auto-
correlation shown in figure 3 and the plateau value in the long-time limit equals the
collective diffusion coefficient. An analogous figure (not presented) is obtained for the
collective diffusivity in the vorticity direction.

Finally, the values of the collective diffusion coefficients in both transverse directions
found from the decay of the DSF are plotted as a function of the number of particles
in a simulation cell, N , in figure 11. It is readily seen that the data are fairly
well approximated by the fit D�(1 − bN−1/3), where D� is a gradient diffusivity
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curves corresponding to D�(1 − bN−1/3). The values of the extrapolated gradient diffusivities
are also shown.

corresponding to k =0. The values of the extrapolated gradient diffusivities are also
shown in the figure.

It is evident from figure 11 that the dependence on the system size is different
(∼ N−1/3) from that for the self-diffusivity (∼ N−1). Let us recall that unlike the self-
diffusivity where Ds is independent of the wavelength of the probed fluctuation of the
tagged particle number density, for collective diffusion, apart from the finite-box-size
effects associated with the periodicity of the boundaries, Dc itself is k-dependent. We
use Dc here to denote the value of diffusivity determined from the DSF approach
before the small-k limit is taken. This dependence can be separated from the finite-
box-size effects if, for instance, the time evolution of F is probed at the same k upon
varying the number of particles in the simulation box. Since k can take on discrete
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Figure 12. Time evolution of the total dynamic structure factor, F (k, t), for φ = 0.35 probed
at the same wavenumber, k = key , upon varying the number of particles. N = 512: k = 4π/
H = 0.687 (——), k = 8π/H = 1.37 (– – –); N = 64: k = 2π/H = 0.687 (�), k = 4π/H = 1.37 (�).

φ D�
yy D�

zz

0.20 0.068 ± 0.008 0.032 ± 0.004
0.25 0.147 ± 0.006 0.089 ± 0.004
0.30 0.32 ± 0.02 0.190 ± 0.015
0.35 0.64 ± 0.05 0.43 ± 0.09
0.40 0.83 ± 0.10 0.76 ± 0.15
0.45 1.04 ± 0.14 1.37 ± 0.21
0.50 ∼ 1.6 ∼ 2.3

Table 2. Summary of the values of the extrapolated gradient diffusivities D�
yy and D�

zz

evaluated for different volume fractions φ.

values 2πm/H , where m =1, 2, 3, . . . , and since k ∝ (φ/N)1/3, to be able to probe F at
the same wavenumber at different N , the number of particles in a simulation should
vary by multiples of 23. Thus, the time evolution of F is probed at two distinct values
of the wavenumber, k = 0.687 and k = 1.37, for the volume fraction φ = 0.35 and two
different box sizes corresponding to N = 512 and N = 64. As one can see from figure 12
the finite-box-size effects are negligible, and the variation of Dc (already with N ∼ 102)
is entirely due to the chosen wavelength of the density fluctuation k.

The calculations of F are performed for a range of volume fractions (up to φ = 0.50)
and wavenumbers (down to k = 0.2) and the values of the collective diffusivities Dc

yy

and Dc
zz are plotted as a function of wavenumber k in figures 13(a) and 13(b),

respectively. It is evident that the linear regression D�(1 − b k) (which is equivalent
to N−1/3 extrapolation) is not accurate for the entire range of the volume fractions:
above φ =0.40 the curves Dc vs. k deform and level out as k → 0 and this is
accounted for by using a Padé approximant of the form (a0 + a1k + · · · + aik

i−1)/(b0+
b1k + · · · + bi+1k

i). An analogous tendency is observed for the dependence Dc
zz vs. k

in figure 13(b) and the same extrapolation procedure is applied in this case as well.
The resulting values of the extrapolated gradient diffusivity are provided in table 2.
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Figure 13. Transverse collective diffusivity as a function of a wavenumber, k, for different
volume fractions: φ =0.25 (�), φ = 0.30 (�), φ = 0.35 (�), φ = 0.40 (�), φ = 0.45 (�) and
φ = 0.50 (�). Dotted lines show the extrapolation to the k = 0 limit. (a) velocity-gradient
direction; (b) vorticity direction.

In figure 14 values of the gradient diffusivities from table 2 are depicted vs. φ

on a log–log plot and compared to the available experimental results (Leighton &
Acrivos 1987; B. K. Chapman & D. T. Leighton 1991, personal communication;
Phillips et al. 1992) and earlier numerical calculations by Marchioro & Acrivos
(2001). The agreement between the experimental measurements and the results of
the present study is quite good over the entire range of volume fractions. It should be
mentioned, however, that none of the experimental gradient diffusivities presented in
figure 14 are from direct measurements of the diffusivities. The experiments involve
either macroscopic concentration gradients (Leighton & Acrivos 1987, Chapman &
Leighton) or spatially varying shear gradients (Phillips et al. 1992), and the diffusivities
are extracted from fitting particle migration data to the solution of model equations.

Note, that the values of the gradient diffusivity are typically more than an order-of-
magnitude larger than those of the self-diffusivity. This can be readily explained using
the asymptotic expression for the collective diffusivity in the low-k limit (2.20). Indeed,
the so-called hydrodynamic factor H defined in (2.20) can be decomposed into a sum
of the velocity auto-correlation term (α =β only) and the velocity cross-correlation
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yy/S

eq (0) ( – – – ) and Ds
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eq (0) (— · —).

term (α �= β only) as

H = Ds +
1

N

〈∑
α �=β

Mαβ exp[ik · (xα − xβ)]

〉
,

and therefore

Dc =
H(k, t)

S(k)
= S(k)−1(Ds + cross-terms). (4.1)

Thus, if the contribution from the cross-terms is neglected, in the limit t → ∞, k → 0
we can approximate the gradient diffusivity as D� ∼ Ds/S(0), where S(0) is the non-
equilibrium value of the static structure factor at zero wavevector, which can be
determined numerically from (2.19) extrapolating to k =0. Our calculations of the
static structure factor of strongly sheared suspensions of hard spheres (see figure 17)
suggest that the long-wavelength fluctuations in the particle number density are unaf-
fected by shear, i.e. S(k) ∼ Seq(k) as k → 0 which is in accord with experimental results
(e.g. Wagner & Russel 1990). Although we cannot probe S(k) in the near vicinity of
k = 0, we shall use the equilibrium value of Seq(0) for hard spheres that can be esti-
mated from the Carnahan–Starling approximation (Pusey 1991). The values of Ds

yy/

Seq(0) and Ds
zz/S

eq(0) are plotted in figure 14 (the dashed and the dashed-dotted lines,
respectively). The qualitative agreement of this approximation with the experimental
results and the results of the DSF approach is fairly good, which means that the
underlying physical mechanism of the shear-induced gradient diffusion is similar to
that in equilibrium colloidal dispersions: the driving force is the non-equilibrium
osmotic compressibility, ∂Π/∂n ∝ S(0)−1, while the effect of the collective mobility is
well approximated by the shear-induced self-mobility of the particles.
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Figure 15. Computed values of S∗(k, t) for a volume fraction φ = 0.35, k = 2π/H ey and
different number of particles, N , and initial configurations, Nc: N = 64, Nc = 132 (�); N =256,
Nc = 32 (�); N = 512, Nc = 16 (�). The solid lines are the best fit according to (5.2).

5. Alternative method of Marchioro & Acrivos (2001) revisited
As seen in figure 14 the agreement with the experimental measurements is very

good, while there is considerable discrepancy between the results of the present study
and the earlier numerical results of Marchioro & Acrivos (2001). In their study
Marchioro & Acrivos (2001) applied a different approach to determine the gradient
diffusivity from conventional SD simulations. Their approach is based upon probing
the temporal relaxation of the quantity S∗(t), defined as

S∗(k, t) =
2

N

〈∣∣∣∣∣
N∑

α=1

sin k · xα(t)

∣∣∣∣∣
2〉

, (5.1)

where k =2π/H ey,z. It was argued by Marchioro & Acrivos (2001) that the time
relaxation of S∗ is diffusive and follows

S∗(k, t) = S∗
∞ + (S∗(k, 0) − S∗

∞(k)) exp[−2kk :Dct], (5.2)

where S∗
∞(k) is the value of S∗ in a steadily sheared suspension as t → ∞ and S∗(k, 0)

is the initial value at t =0. To be able to probe the collective diffusivity from the
decay of S∗ the ‘gain’, S∗(k, 0) − S∗

∞(k), in (5.2) cannot be too small. To achieve
this, it was proposed to bias initial random hard-sphere configurations with a value
of S∗(k, 0) in the range 0.5–1.0. As a result of the lower computational efficiency
of conventional SD compared to that of ASD, the number of particles used in
the simulations by Marchioro & Acrivos (2001) did not exceed N =64. To address
the aforementioned discrepancy we performed calculations for two volume fractions
φ = 0.35 and φ = 0.45 using ASD with the number of particles ranging from N = 64 to
N = 512, while using (5.2) to extract the diffusivity. In figure 15 the time evolution of
S∗(k, t), starting from the initial configurations with S∗(0) ∈ (0.5, 1) in the y-direction,
is shown for kc =2π/H ey and different numbers of particles. The solid lines are best
fits according to (5.2). The analogous computation was performed in the vorticity
direction with kc = 2π/H ez and S∗(k, 0) ∈ (0.5, 1). The resulting values of the collective
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Figure 16. Values of collective diffusivities for a volume fraction φ = 0.35 plotted as a func-
tion of the number of particles: SD simulations of Marchioro & Acrivos 2001 (�), ASD
simulations of the present study (�). The solid lines are the best fit according to N−1/3, the
dashed lines are the extrapolating curves N−1 used by Marchioro & Acrivos (2001). (a) Dc

yyMA;

(b) Dc
zzMA.

diffusion coefficients, Dc
yyMA and Dc

zzMA (the subindex MA is used to distinguish these
results from the those of the DSF approach) are depicted in figures 16(a) and 16(b),
respectively, and compared with the results of Marchioro & Acrivos (2001).

It is seen from these figures that there is a good match between the present ASD
results and the SD results by Marchioro & Acrivos (2001) at N = 64. Since simulations
in Marchioro & Acrivos (2001) were limited to rather small systems with N =64
particles at most, the self-diffusivity extrapolation N−1 (Sierou & Brady 2004) was
used to estimate the gradient diffusivity in the limit of infinite suspension (dashed line
in figures 16a and b). It appears that the k-dependence is the same as for the DSF
approach and the proper extrapolation curve approaches D� as N−1/3 (solid line in
figure 16a, b). In table 3 the values of the corrected gradient diffusivities extrapolated
using the N−1/3 asymptote are compared with those from Marchioro & Acrivos (2001)
and with those from the DSF approach for φ =0.35, 0.45. Although the corrected
values of the gradient diffusivities, D� corr

MA , and the predictions of the DSF approach
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φ D�
yyMA D� corr

yyMA D�
yy D�

zzMA D� corr
zzMA D�

zz

0.35 0.19 ± 0.05 0.46 ± 0.04 0.64 ± 0.05 0.21 ± 0.02 0.46 ± 0.03 0.43 ± 0.09
0.45 0.32 ± 0.08 1.06 ± 0.06 1.04 ± 0.14 0.62 ± 0.10 1.36 ± 0.16 1.37 ± 0.21

Table 3. Values of the gradient diffusivities evaluated using the approach of Marchioro &
Acrivos (2001): D�

MA correspond to the SD results obtained in their original paper by linear

extrapolation N−1; D� corr
MA are the ASD results of the present study extrapolated by N−1/3.

D� correspond to the results obtained from dynamic structure factor approach.

show quite good agreement, one might expect to have very close agreement if the
two approaches for determining the gradient diffusivity were equivalent. As we show
below, the two approaches are not equivalent as the method of (Marchioro & Acrivos
2001) probes relaxation of the particle number density, rather than relaxation of the
particle density fluctuations probed by the DSF approach, the latter being appropriate
in the weak gradient limit.

To understand this difference, we note that the quantity S∗ defined in (5.1) is related
to the static structure factor S(k) (2.19) and more rigorously satisfies the inequality

S∗(k, t) 	 2S(k), (5.3)

where by S(k) we mean the instantaneous value of the static structure factor at time
t . In a steadily sheared suspension in the limit t → ∞ the microstructure is different
from that of the equilibrium state (see figure 1) and, moreover, in the former case the
structure factor is a function of k due to the flow-induced anisotropy, while in the
equilibrium case it is a function of k = |k| due to rotational symmetry. Figure 17(a)
shows projections of S(k) onto the three principal axes, x, y and z, plotted as a function
of wavenumber k together with the equilibrium dependence Seq(k) calculated using
the Percus–Yevic (PY) theory. The deviation S − Seq, which is widely used in sheared
colloidal dispersions to quantify the distortion of the suspension microstructure out of
equilibrium, is depicted in figure 17(b). One can see that in addition to the distortion
along the flow direction, there is a considerable perturbation along both transverse
directions y and z. Note, that in the low-k limit the distortion S − Seq in all directions
is small, while S(k) <Seq(0) for finite ky and kz. (A qualitatively similar deformation
of the microstructure was observed in experiments in steadily sheared concentrated
colloidal suspensions using small-angle neutron scattering (Johnson, de Kruif & May
1988; de Kruif et al. 1990; Wagner & Russel 1990). As seen in figure 17(a) the peak in
S(k) along the flow and the vorticity directions decreases and shifts to higher ka at
higher shear rates (higher Péclet numbers). Also, low-k measurements at ka = 0.85
show that the ratio of the measured static structure factor for sheared dispersions
to the one at equilibrium S(k)/Seq(k) > 1 along the flow direction and S(k)/Seq(k) < 1
along the vorticity direction (Johnson et al. 1988).) Thus, it follows from the inequality
(5.3) that initial configurations with S∗(k, 0) > 0.5 would necessarily have S(k) > 0.25
which is at least an order-of-magnitude higher than the value of S(k) in a steadily
sheared suspension as t → ∞ (e.g. for 512 particles and kc =0.34 we found S(k) � 0.02
for both ky and kz, while Seq(0) = 0.062 from PY theory). In other words, although the
initial configurations are picked randomly from independent hard-sphere configura-
tions, the restriction on S∗(k, 0) implies that the averaged microstructure of the suspen-
sion at t =0 is highly perturbed compared to that at t → ∞. Thus, the method proposed
by Marchioro & Acrivos (2001) concerns relaxation of the disturbed suspension
microstructure, while the DSF approach applies in the steadily sheared suspension
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Figure 17. Flow-induced distortion of the suspension microstructure out of equilibrium for
φ = 0.35. (a) Projections of the static structure factor S(k) on the principal axes: in the flow
direction (�), velocity-gradient (�) and vorticity (�). The solid line is the Percus–Yevic closure
for Seq (k). (b) Distortion of the static structure factor from the equilibrium state S(k) − Seq(k)
as a function of the wavenumber k.

when S(k) does not evolve considerably in time but only fluctuates around its mean
value.

Since spatial inhomogeneity of the particle density is involved in the approach by
Marchioro & Acrivos (2001), the value of Dc may depend on the amplitude as
well as the shape of the initial distortion of the microstructure, S∗(k, 0). To demon-
strate that the nature of the initial distortion may affect the results we performed
a simulation for φ = 0.35 and N = 512 particles using Nc = 24 initial random hard-
sphere configurations with S∗(k, 0) ∼ 0.45 in both transverse directions y and z simul-
taneoulsy.† In this way, both coefficients Dc

yyMA and Dc
zzMA are evaluated from the

same series of simulations. The time evolution of the ensemble-averaged S∗ is given in
figure 18 for both y and z. It appears that the symmetric distortion of the micro-
structure along both transverse directions results in values of collective diffusivities

† The generation of random hard-sphere configurations with values of S∗(k, 0) ∈ (0.5, 1) along
both transverse directions simultaneously is a difficult task. For φ = 0.35 we could not generate any
random hard-sphere configurations with both S∗(ky, 0) and S∗(kz, 0) above 0.6. This observation
indicates the fact that the microstructure of such particle distributions is indeed extremely distorted.



166 A. M. Leshansky and J. F. Brady

0 5 10 15

0.2

0.3

0.4

0.5

Dc
yyMA = 0.51 (0.36)

Dc
zzMA = 0.40 (0.35)

Time, t

S*

Figure 18. Values of S∗(t) computed for φ = 0.35 and N =512. k = 2π/H ey (– – –) and
k = 2π/H ez (– · –). 24 initial random configurations with values of S∗(k, 0) approximately
0.45 in both directions y and z simultaneously are used for simulation. The resulting values
of the collective diffusivities are also shown together with the equivalent results obtained with
S∗(k, 0) ∼ 0.5 along only one direction y or z (in parenthesis).

that are quite different from those obtained using the method described by
Marchioro & Acrivos (2001) where the microstructure is initially distorted along
only one direction. Note also that in the later case of asymmetric perturbation the
resulting values of the collective diffusivities are very close, Dc

yy/D
c
zz ∼ 1, while in the

former case of the symmetric initial distortion this ratio is close to that from the
DSF technique: Dc

yyMA/Dc
zzMA � 1.3 and Dc

yy/D
c
zz � 1.4. The better qualitative agree-

ment with the results of the DSF approach here is not surprising: the relaxation of
the particle density occurs simultaneously in the y- and z-directions in the same way
as the relaxation of the random density fluctuation in a steadily sheared suspension
as probed by the DSF approach.

6. Summary and concluding remarks
In the present study we determined the shear-induced diffusivities (self- and

gradient) using the dynamic structure factor (DSF) approach from Accelerated
Stokesian Dynamics simulations. Monodisperse suspensions of non-colloidal hard
spheres in a simple shear flow at zero Reynolds number were used in simulations.
All calculations were performed in a steadily sheared suspension starting from initial
random hard-sphere configurations after they have been pre-equilibrated for 20γ̇ t

strains. Using the dynamic structure factor approach we probed the time autocorrela-
tions in particle number density while the shear-induced self- and gradient diffusivities
are evaluated from the time rate of decay of appropriate dynamic structure factors.
The expressions (2.12)–(2.13) are the appropriate generalization of the DSF approach
that would allow the study of particle transport along an arbitrary direction in
suspensions in shearing flows. In this work we only considered diffusion in the plane
orthogonal to the flow, i.e. in the velocity-gradient and the vorticity directions.

For the self-diffusivity the leading term in the low-k expansion of the self-dynamic
structure factor is the integral of the velocity autocorrelation function, which is
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a well-known kinematic description of self-diffusivity. The self-diffusion coefficients
evaluated from the DSF approach are in excellent agreement with previously reported
results determined numerically from the time evolution of particles’ mean-square
displacements in the range of volume fractions φ = 0.10–0.50 (Sierou & Brady 2004).
Moreover, beyond φ =0.50 when the shear-induced string-ordering transition takes
place, an order-of-magnitude drop in the value of self-diffusivities along both trans-
verse directions is observed. At a higher concentration of φ = 0.60, when the suspen-
sion is shear-melted to a disordered state, the values of both self-diffusivities increase
abruptly to the maximum value observed, e.g. Ds

yy � 0.15a2γ̇ .
For the gradient diffusivity, although the leading term in the low-k expansion of the

total dynamic structure factor leads to the appropriate kinematic description in terms
of the integral of the velocity cross-correlation function and the static structure factor,
higher-order terms in k cannot be neglected even for systems of N ∼ 103 particles.
Therefore, the decay of the total dynamic structure factor is probed and the results
are extrapolated to the limit of infinite box size to extract the gradient diffusivity
corresponding to the limit k → 0. The overall agreement between the results of the
DSF approach and experiments is very good, although it should be noted that none
of the experiments measure the gradient diffusivity directly; rather it is extracted
from fitting particle migration data to the solution of model equations. To the best
of the authors’ knowledge, no dynamic scattering experiments that study diffusion
in steadily sheared suspensions have been reported to date. Also, the present theory
suggests that an approximate model for the gradient diffusivity is D� ∼ Ds/Seq(0),
which agrees qualitatively well with the full results of the DSF approach and the
available experimental measurements for a wide range of particle volume fractions.

It was also found that the values of the shear-induced gradient diffusivity reported
earlier by Marchioro & Acrivos (2001) are significantly underestimated due to the
small system size available with conventional SD simulations. Although there is a
good agreement between results based on relaxation of the dynamic structure factor
and those of Marchioro & Acrivos (2001) (after being correctly extrapolated to the
limit of infinite system size), we showed that their approach involves relaxation of
spatial inhomogeneities of particle density and is, therefore, rather sensitive to the
amplitude and the shape of the initial distortion of the suspension microstructure.

The major advantage of the proposed approach is that the simulations are per-
formed on statistically homogeneous, steadily sheared suspensions, without introduc-
ing any artificial perturbations to the suspension microstructure. This also allows us
to determine both diffusivities (self- and the gradient) in both transverse directions
from the same series of simulations. Furthermore, the DSF approach does not depend
on particle-level dynamics and therefore is the natural starting point for determining
the diffusivity in any system whether in equilibrium or not.

The authors would like to thank Ileana Carpen for providing results of the Brownian
dynamics simulations. A.M.L. also acknowledges the support of the Lester Deutch
Foundation.
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